

[Sao, 4(9): September 2017] DOI- 10.5281/zenodo.886079

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES CONVERGENCE OF S-METRIC SPACE

G.S.Sao^{*1}, S.N.Gupta² & G.P.Banaj³

^{*1}Dept of Mathematics, Govt. ERR PG Science College, Bilaspur (C.G.) ^{2&3}Dept.of Mathematics, K. Govt. Arts & Science College, Raigarh (C.G.)

ABSTRACT

In this paper, we study fixed point theorems in S-metric spaces focusing on single mapping]. we obtain fixed point in S-metric spaces.

Keywords: *S-metric space, fixed point.* **2010 MSC:** 54H25, 54E99.

I. INTRODUCTION

In 2006, Z. Mustafa and B. I. Sims [6] introduced the concept of G-metric space which is a generalization of metric space, and proved some fixed point theorems in G-metric space. Subsequently, many authors were proved fixed point theorems in G- metric space (see, eg. [3,7,11]). And B. C. Dhage [4] introduced the notion of D-metric space. In 2007, S. Sedghi, N. Shobe and H. Zhou [10] introduced D*- metric space which is a modification of D-metric space of [4] and proved some fixed point theorems in D*- metric space and later on many authors were proved fixed point theorems in D*- metric space (see, e.g. [1,5]). In 2012, S. Sedghi et al. [9] introduced the notion of S-metric space which is a generalization of G-metric space of [4] and D*- metric space of [10] and proved some fixed point theorems on S-metric space. Recently, S. Sedghi, N.V. Dung [8] proved generalized fixed point theorems in S-metric spaces which is a generalization of [9]. In this paper, we proved some fixed point results on complete S-metric spaces. Our results extended and improved the results of [8].

II. PRELIMINARIES

Definition 2.1. Let X be a nonempty set. An S-metric on X is a function $S : X^3 \rightarrow [0,\infty)$ that satisfies the following conditions holds for all x, y, z, $a \in X$.

- 1. $S(x,y,z) = 0 \iff x = y = z$
- 2. $S(x, y, z) \le S(x, x, a) + S(y, y, a) + S(z, z, a)$

The pair (X, S) is called an S-metric space.

Definition 2.2. Let *X* be a nonempty set. A metric on *X* is a function $d : X^2 \to [0,\infty)$ if there exists a real number $b \ge 1$ such that the following conditions holds for all *x*, *y*, $z \in X$.

(1) $d(x, y) = 0 \iff x = y$

(2)
$$d(x, y) = d(y, x)$$

(3) $d(x, z) \le b[d(x, y) + d(y, z)]$

The pair (X, d) is called a b-metric space.

Definition 2.3 Let (X, S) be an S-metric space a sequence $\{x_n\} \subset X$ is Cauchy sequence if $S(x_n, x_n, x_m) \to 0$ as $m, n \to \infty$. That is, for each $\mathcal{E} > 0$, there exists $n_0 \in N$ such that for all $m, n \ge n_0$ we have $S(x_n, x_n, x_n) < \mathcal{E}$.

[Sao, 4(9): September 2017] DOI- 10.5281/zenodo.886079

ISSN 2348 - 8034 Impact Factor- 4.022

Definition 2.4. Let (X, S) be an S-metric space a sequence $\{x_n\} \subset X$ converges to $x \in X$ if $S(x_n, x_n, x) \to 0$ as $n \to \infty$. That is, for each $\mathcal{E} > 0$, there exists $n_0 \in N$ such that for all $n \ge n_0$ we have $S(x_n, x_n, x) < \mathcal{E}$ ". We write for $x_n \to x$.

Definition 2.5. The S-metric space (*X*, *S*) is complete if every Cauchy sequence converges.

Lemma 2.6. Let $f: X \to Y$ be a map from an S-metric space X to an S-metric space Y. Then f is continuous at $x \in X$ if and only if $f(x_n) \to f(x)$ whenever $x_n \to x$.

Lemma 2.7. Let (X, S) be an S-metric space. If $x_n \to x$ and $y_n \to y$ then $S(x_n, x_n, y_n) \to S(x, x, y)$.

Lemma 2.8. In an S-metric space, we have S(x, x, y) = S(y, y, x) for all $x, y \in X$.

III. MAIN RESULT

Theorem 3.1. Let T be a self-map on a complete S-metric space (X,S) and $S(Tx, Ty,z) \leq a_1S(x, y,z)+a_2[S(x, Tx,z)+S(y, Ty,z)]+a_3[S(x,Ty,z)+S(y, Tx,z)]$ for all x, y, $z \in X$. Then T has a fixed point. If $a_1+a_2+a_3 < 1/2$.

 $\Rightarrow (1-a_2-a_3)[S(Tx,Tx,a)+S(Ty,Ty,a)]+(1-a_1-2a_2-2a_3)S(z,z,a)$ $\leq (a_1+a_2+a_3)[S(x,x,a)+S(y,y,a)]$

Applying the given condition $a_1+a_2+a_3 < 1/2$ then we are getting Tx=Ty=z, hence T has a fixed point

Theorem 3.2: Let T be a self-map on a complete S-metric space (X,S) and $S(Tx, Tx, Ty) \le aS(Tx, Tx, y) + bS(Ty, Ty, y)$ for all $x, y \in X$ then T has a fixed point and continuous, if $a, b \ge 0$ and a+2b < 1

Proof: S. Sedghi, N.V. Dung [8] introduce C_1 :for all x,y, $z \in R_+$, if $y \leq S(Tx, Tx, 0)$ with $z \leq 2x+y$ then T has a fixed point C_2 :for all $y \in R_+$, if $y \leq S(Ty, 0, Ty)$ then y=0 and T has a fixed point and which would be unique C_3 : if $x_i \leq y_i+z_i$ for all $x, y, z \in R_+$ and $i \leq 3$ then $S(Tx_1, Tx_2, Tx_3) \leq S(Ty_1, Ty_2, Ty_3) + S(Tz_1, Tz_2, Tz_3)$

12

Then T has a fixed point which would be continuous. Here Suppose $S(Tx,Ty,Tz)=ax+by \quad a,b>0,a+2b<1 \quad ; \quad x,y,z \in R_+, \text{ then } S(Tx,Ty,0)=ax+b(x+y)$ If $y \leq S(Tx,Tx,0)$ with $z \leq 2x+y$ $y \leq ax+bx+by \leq (a+b)x + by$

So $(1-b)y \le (a+b)x$ $y \le \frac{a+b}{1-b}x$ but a+2b < 1 then $\frac{a+b}{1-b} < 1$

Therefore S satisfies C_1 then T has a fixed point

[Sao, 4(9): September 2017] DOI- 10.5281/zenodo.886079

Suppose $y \leq S(Ty,0,y) \leq ay+b(0+0)=ay$ Then y=0,a<1 ISSN 2348 - 8034 Impact Factor- 4.022

Therefore S satisfied C_2 then T has a fixed point and which would be unique

Fnally if $x_i \le y_i + z_i$ for $i \le 3$ then $S(Tx_1, Tx_2, Tx_3) = ax_1 + bx_2 = a(y_1 + z_1) + b(y_2 + z_2) = ay_1 + by_2 + az_1 + bz_2$ $\le S(Ty_1, Ty_2, Ty_3) + S(Tz_1, Tz_2, Tz_3)$

More over S(0,0,0)=0+b(0+2y)=2by where 2b<1

Therefore S satisfies C_3 then T has a fixed point which would be continuous.

Hence T is continuous and T has a fixed point which is unique.

IV. CONCLUSION

We have come to conclusion that T has a fixed point which is unique.

V. ACKNOWLDGEMENT

The authors are thankful to the reviewers for their valuable suggestions to enhance the quality of our article.

REFERENCES

- 1. R. P. Agarwal, M. Meehan, D. O. Regan, Fixed Point Theory and Applications, Cambridge University Press, 2004.
- 2. I. A. Bakhtin, The contraction principle in quasi metric spaces, Func. An., Ulianowsk, Gos.Ped.Ins.30(1989), 26-37.
- 3. R. Chugh, T. Kadian, A. Rani, B. E. Rhoades, Property P in G-metric spaces, Fixed Point Theory Appl. Vol.2010, Article ID 401684.
- 4. B. C. Dhage, Generalized metric spaces mappings with fixed point, Bull. Calcutta Math. Soc. 84(1992), 329-336.
- 5. M. Jovanvić, Z. Kadelburg, S. Radenović, Common fixed point results in metric-type spaces, Fixed Point Theory Appl. 2010 (2012), 1-15.
- 6. Z. Mustafa, B. I. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7(2006), 289-297.
- 7. Z. Mustafa, H. Obiedat, F. Awawdeh, Some common fixed point theorems for mapping on complete Gmetric spaces, Fixed Point Theory Appl. Vol.2008, Article ID 189870.
- 8. S. Sedghi, N. V. Dung, Fixed point theorems on S-metric spaces, Mat. Vesnik 66, 1(2014), 113-124.
- 9. S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorem in S-metric spaces, Mat. Vesnik 64(2012), 258-266.
- 10. S. Sedghi, N. Shobe, H. Zhou, A common fixed point theorem in D*-metric space, Fixed Point Theory Appl. (2007), 1-13.
- W. Shatanawi, Fixed point theory for contractive mappings satisfying ΦΦ- maps in G-metric spaces, Fixed Point Theory Appl. (2010), Article ID 181650

13

