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ABSTRACT  
In this paper, we study fixed point theorems in S-metric spaces focusing on single mapping]. we obtain fixed point 

in S-metric spaces.  
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I. INTRODUCTION 
 

In 2006, Z. Mustafa and B. I. Sims [6] introduced the concept of G-metric space which is a generalization of metric 

space, and proved some fixed point theorems in G-metric space. Subsequently, many authors were proved fixed 

point theorems in G- metric space (see, eg. [3,7,11]). And B. C. Dhage [4] introduced the notion of D-metric space. 
In 2007, S. Sedghi, N. Shobe and H. Zhou [10] introduced D*- metric space which is a modification of D-metric 

space of [4] and proved some fixed point theorems in D*- metric space and later on many authors were proved fixed 

point theorems in D*- metric space (see, e.g. [1,5]). In 2012, S. Sedghi et al. [9] introduced the notion of S-metric 

space which is a generalization of G-metric space of [4] and D*- metric space of [10] and proved some fixed point 

theorems on S-metric space. Recently, S. Sedghi, N.V. Dung [8] proved generalized fixed point theorems in S-

metric spaces which is a generalization of [9]. In this paper, we proved some fixed point results on complete S-

metric spaces. Our results extended and improved the results of [8]. 

 

II. PRELIMINARIES  
 

Definition  2.1. Let X be a nonempty set. An S-metric on X is a function S : X3→ [0,∞) that satisfies the following 

conditions holds for all  x, y, z, a  X. 

1. S(x,y, z) = 0   x = y = z 

2. S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a) 

 
The pair (X, S) is called an S-metric space. 

 

Definition 2.2.  Let X be a nonempty set. A metric on X is a function d : X2 → [0,∞)  if there exists a real number b 

≥1 such that the following conditions holds for all x,y, z  X. 

(1) d(x, y) = 0   x = y 
(2) d(x, y) = d(y, x) 

(3) d(x, z) ≤  b[d(x, y) + d(y, z)] 

 

The pair (X, d) is called a b-metric space. 

 

Definition 2.3  Let (X, S) be an S-metric space a sequence {xn}   X is Cauchy  sequence  if S(xn , xn , xm) → 0 as 

m,n→ ∞.That is, for each   > 0, there exists n0  N such that for all m,n ≥ n0 we have   S(xn , xn , x)<  . 
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Definition 2.4.  Let (X, S) be an S-metric space a sequence {xn}  X converges to xX if S(xn  xn  x) → 0 as n→ ∞.  

That is, for each   > 0, there exists n0   N such that for all n ≥ n0 we have S(xn , xn , x)<  ". We write for xn → x. 

 

Definition 2.5.  The S-metric space (X, S) is complete if every Cauchy sequence converges. 

 

Lemma 2.6.  Let f : X→ Y be a map from an S-metric space X to an S-metric space Y .Then f is continuous at x  X 

if and only if f(xn) → f(x) whenever xn→ x. 

 

Lemma 2.7.  Let (X, S) be an S-metric space. If xn→  x and yn → y then S(xn, xn, yn) → S(x, x, y). 

 

Lemma 2.8.  In an S-metric space, we have S(x, x, y) = S(y, y, x) for all x, y X. 

 

III. MAIN RESULT 
 

Theorem 3.1. Let T be a self-map on a complete S-metric space (X,S) and 

S(Tx, Ty,z) ≤a1S(x, y,z)+a2 [S(x, Tx,z)+ S(y, Ty,z)]+a3[S(x,Ty,z)+ S(y, Tx,z)] 

for all x, y, z  X . Then  T has a fixed point. If   a1+a2+a3 <1/2 .     

 
Proof: Using the definition of S-metric space ,we have 

S(Tx, Ty,z) ≤S(Tx,Tx,a)+S(Ty,Ty,a)+S(z,z,a) 

                  ≤ a1[S(x,x,a)+S(y,y,a)+S(z,z,a) 

                  +a2[S(x,x,a)+S(Tx,Tx,a)+S(z,z,a)+S(y,y,a)+S(Ty,Ty,a)+S(z,z,a) 

                  +a3[S(s,s,a) +S(Ty,Ty,a)+S(z,z,a)+S(y,y,a)+S(Tx,Tx,a)+S(z,z,a)] 

 

   (1-a2-a3)[S(Tx,Tx,a)+S(Ty,Ty,a)]+(1-a1-2a2-2a3)S(z,z,a) 

           ≤(a1+a2+a3)[S(x,x,a)+S(y,y,a)] 

 

Applying the given condition  a1+a2+a3 <1/2   then we are getting Tx=Ty=z ,hence T  has a fixed point  

 

Theorem 3.2: Let T be a self-map on a complete S-metric space (X,S) and 

      S(Tx,Tx,Ty) ≤ aS(Tx,Tx,y)+bS(Ty,Ty,y)   

for all x, y  X   then  T has a fixed point and continuous , if  a,b≥0 and a+2b<1 

 

Proof: S. Sedghi, N.V. Dung [8] introduce 

C1:for all x,y,zR+, if  y≤S(Tx,Tx,0) with z≤2x+y   then T  has a fixed point 

C2 :for all yR+ , if  y≤S(Ty,0,Ty) then y=0  and T has a fixed point and which  would be unique 

C3 : if  xi  ≤  yi+zi    for   all  x,y,zR+  
 and  i ≤3 then  S(Tx1,Tx2,Tx3) ≤S(Ty1,Ty2,Ty3)+S(Tz1,Tz2,Tz3) 

   

Then T has a fixed point  which would be continuous. 

Here   Suppose  S(Tx,Ty,Tz)=ax+by    a,b>0,a+2b<1   ;  x,y,zR+,  then 
           S(Tx,Ty,0)=ax+b(x+y) 

          If   y≤ S(Tx,Tx,0)  with    z≤2x+y 

         y≤ ax+bx+by 

           ≤  (a+b)x  +by 

 

So    (1-b)y ≤ (a+b)x 

     y≤
b

ba





1
x   but a+2b<1   then   

b

ba





1
<1 

Therefore  S satisfies  C1 then T  has a fixed point 
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Suppose    y ≤ S(Ty,0,y) ≤ay+b(0+0)=  ay 

Then  y=0,a<1 

 
Therefore  S satisfied  C2 then T has a fixed point and which  would be unique 

 

Fnally if  xi  ≤  yi+zi    for   i ≤3 then 

S(Tx1,Tx2,Tx3)=ax1+bx2     = a(y1+z1 )+b(y2+z2 )   =ay1+by2+az1+bz2   

                       ≤ S(Ty1,Ty2,Ty3)+S(Tz1,Tz2,Tz3) 

 

More over  S(0,0,0)=0+b(0+2y)=2by      where 2b<1 

 

Therefore  S satisfies C3 then T has a fixed point  which would be continuous. 

 

Hence T is continuous and T has a fixed point which is unique. 
 

IV. CONCLUSION 
 

We have come to conclusion that T has a fixed point  which is unique . 
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